

Deutsche Akkreditierungsstelle

Anlage zur Akkreditierungsurkunde D-PL-20185-01-06 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 17.01.2025Ausstellungsdatum: 08.09.2025

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-PL-20185-01-00.

Inhaber der Akkreditierungsurkunde:

Limbach Analytics GmbH Edwin-Reis-Straße 6-10, 68229 Mannheim

mit dem Standort

Limbach Analytics GmbH
Dekan-Laist-Straße 9, 55129 Mainz

Das Prüflaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Prüflaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese nachfolgend ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Prüflaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Prüfungen in den Bereichen:

ausgewählte physikalische, physikalisch-chemische und chemische Untersuchungen von Wasser (Abwasser, Rohwasser, Trinkwasser und Wasser aus Rückkühlwerken); Probenahme von Abwasser, Roh- und Trinkwasser sowie Wasser aus Rückkühlwerken; physikalische, physikalisch-chemische, chemische, mikrobiologische, molekularbiologische und sensorische Untersuchungen von Lebensmitteln, Bedarfsgegenständen und Futtermitteln;

Diese Urkundenanlage wurde ausgestellt durch die Deutsche Akkreditierungsstelle GmbH und ist digital gesiegelt. Sie gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite

mikrobiologische und ausgewählte chemische Untersuchungen gemäß Trinkwasserverordnung; Probenahme und mikrobiologische Untersuchungen von Nutzwasser gemäß §3 Absatz 8 42. BImSchV

Flexibler Akkreditierungsbereich:

Dem Prüflaboratorium ist innerhalb der gekennzeichneten Prüfbereiche, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf,

[Flex B] die freie Auswahl von genormten oder ihnen gleichzusetzenden Prüfverfahren gestattet. [Flex C] die Modifizierung sowie Weiter- und Neuentwicklung von Prüfverfahren gestattet. Die aufgeführten Prüfverfahren sind beispielhaft.

Dem Prüflaboratorium ist, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten genormten oder ihnen gleichzusetzenden Prüfverfahren mit unterschiedlichen Ausgabeständen gestattet (Flexibilisierung nach Kategorie A).

Das Prüflaboratorium verfügt über eine aktuelle Liste aller Prüfverfahren im flexiblen Akkreditierungsbereich. Die Liste ist öffentlich verfügbar auf der Webpräsenz des Prüflaboratoriums.

1 Untersuchungen von Wasser (Abwasser, Roh- und Trinkwasser und Wasser aus Rückkühlwerken)

1.1 Probenahme und Probenvorbereitung

DIN EN ISO 5667-1 (A 4) 2007-04	Wasserbeschaffenheit; Probenahme - Teil 1: Anleitung zur Aufstellung von Probenahmeprogrammen und Probenahmetechniken
DIN 38402-A 11 2009-02	Probenahme von Abwasser
DIN ISO 5667-5 (A 14) 2011-02	Wasserbeschaffenheit - Probenahme - Teil 5: Anleitung zur Probenahme von Trinkwasser aus Aufbereitungsanlagen und Rohrnetzsystemen
DIN EN ISO 5667-3 (A 21) 2013-03	Wasserbeschaffenheit - Probenahme - Teil 3: Konservierung und Handhabung von Wasserproben
DIN 38402-A 30 1998-07	Vorbehandlung, Homogenisierung und Teilung heterogener Wasserproben
DIN EN ISO 15587-2 (A 32) 2002-07	Wasserbeschaffenheit - Aufschluss für die Bestimmung ausgewählter Elemente in Wasser - Teil 2: Salpetersäure-Aufschluss
DIN EN ISO 19458 (K 19) 2006-12	Wasserbeschaffenheit - Probenahme für mikrobiologische Untersuchungen

1.2 Physikalische und physikalisch-chemische Kenngrößen

DIN 38404-C4

1976-12

Bestimmung der Temperatur

DIN EN ISO 10523 (C 5)

2012-04

Wasserbeschaffenheit - Bestimmung des pH-Werts

DIN 38404-C6

1984-05

Bestimmung der Redox-Spannung

DIN EN 27888 (C 8)

1993-11

Wasserbeschaffenheit; Bestimmung der elektrischen Leitfähigkeit

1.3 Kationen

DIN EN ISO 11885 (E 22)

2009-09

Wasserbeschaffenheit; Bestimmung von ausgewählten Elementen durch

induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES)

DIN EN ISO 17294-2 (E 29)

2017-01

Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-

Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von ausgewählten

Elementen einschließlich Uran-Isotope

1.4 Gasförmige Bestandteile

DIN EN ISO 5814 (G 22)

Wasserbeschaffenheit; Bestimmung des gelösten Sauerstoffs,

2013-02

Elektrochemisches Verfahren

1.5 Summarische Wirkungs- und Stoffkenngrößen

DIN 38409-H 6

Härte eines Wassers

1986-01

(Modifikation: Bestimmung von Calcium und Magnesium mit ICP-MS)

1.6 Mikrobiologische Untersuchungen

DIN EN ISO 6222 (K 5)

1999-07

Wasserbeschaffenheit - Quantitative Bestimmung der kultivierbaren Mikroorganismen - Bestimmung der Koloniezahl durch Einimpfen in ein

Nähragarmedium

DIN EN ISO 16266 (K 11)

Wasserbeschaffenheit - Nachweis und Zählung von Pseudomonas

2008-05

aeruginosa - Membranfiltrationsverfahren

Gültig ab: 17.01.2025 Ausstellungsdatum: 08.09.2025

Seite 4 von 18

DIN EN ISO 9308-1 (K 12)

Wasserbeschaffenheit - Nachweis und Zählung von Escherichia coli und coliformen Bakterien - Teil 1: Membranfiltrationsverfahren

DIN EN ISO 7899-2 (K 15)

Wasserbeschaffenheit - Nachweis und Zählung von intestinalen Enterokokken - Teil 2: Verfahren durch Membranfiltration

DIN EN ISO 14189 (K 24)

Wasserbeschaffenheit - Zählung von Clostridium perfringens - Verfahren mittels Membranfiltration

2 Untersuchung von Lebens- und Futtermitteln sowie Einrichtungs- und Bedarfsgegenständen

2.1 Physikalische, physikalisch-chemische und chemische Untersuchungen

2.1.1 Enzymatische Bestimmungen von Inhalts- und Zusatzstoffen in Lebensmitteln [Flex B]

ASU L 07.00-17 2017-10	Untersuchung von Lebensmitteln - Bestimmung von L-Glutaminsäure
2017-10	(L-Glutamat) in Fleischerzeugnissen - Enzymatisches Verfahren
ASU L 31.00-12 1997-01	Untersuchung von Lebensmitteln - Enzymatische Bestimmung der Gehalte an D-Glucose und D-Fructose in Frucht- und Gemüsesäften
ASU L 31.00-13 1997-09	Untersuchung von Lebensmitteln - Enzymatische Bestimmung des Saccharosegehaltes in Frucht- und Gemüsesäften
ASU L 48.02.07-3 1985-05	Untersuchung von Lebensmitteln - Bestimmung von Stärke in Kinder- Zwieback und Zwiebackmehl
D-Milchsäure(D-Lactat)/ L-Milchsäure (L-Lactat) r-Biopharm® (Art. Nr.: 11112821035) 2021-08	Enzymatische Bestimmung von L- und D-Milchsäure in Lebensmitteln
L-Glutaminsäure r-Biopharm® (Art. Nr.: 10139092035) 2021-08	Enzymatische Bestimmung von L-Glutaminsäure (L-Glutamat) in Lebensmitteln
Saccharose, D-Glucose und D-Fructose r-Biopharm® (Art. Nr.: 10716260035) 2021-08	Enzymatische Bestimmung von Saccharose, D-Glucose und D-Fructose in Lebensmitteln

Stärke Enzymatische Bestimmung von Stärke in Lebensmitteln

r-Biopharm®

(Art. Nr.: 10207748035)

2021-08

SOP-MZ-088 2022-09

Bestimmung von Lactose und D-Galactose in Lebensmitteln

2.1.2 Photometrische Bestimmungen von Inhalts- und Zusatzstoffen sowie Kontaminanten in Fleisch und Fleischerzeugnissen, Gewürzen, Obst und Gemüse [Flex B]

ASU L 06.00-9 Untersuchung von Lebensmitteln - Bestimmung des Gesamtphosphor-

2008-06 gehaltes in Fleisch und Fleischerzeugnissen - Photometrisches

Berichtigung Verfahren

2009-06 (Modifizierung: 2 ml Filtrat + 5 ml Reagenzlösung nach 5 min Messen)

ASU L 08.00-14 Untersuchung von Lebensmitteln - Bestimmung des Nitrat- und Nitrit-2008-06

gehaltes in Wurstwaren nach enzymatischer Reduktion von Nitrat zu

Nitrit - Spektralphotometrisches Verfahren (Modifizierung: pH-Wert-Einstellung mit pH-Elektrode, Anwendung auch

auf Gemüse und Kräuter)

ASTA Methode 12.1 Bestimmung von Piperin in Pfeffer

1997-01 (Modifizierung: 4-Punkt-Eichung statt Extinktionskoeffizient)

ASTA Methode 18.0

2004-10

Bestimmung von Curcumin

ASTA Methode 20.1

2004-10

Bestimmung von Capsanthin (ASTA-Farbwert, Standard-Farb-Einheiten)

2.1.3 **Destillative Verfahren**

ISO 5565-2 Vanille [Vanilla fragrans (Salisbury) Ames] - Teil 2: Prüfverfahren

1999-12 (Einschränkung: hier nur 4.1 Bestimmung des Feuchtegehalts in Vanille-

schoten und Pulver)

DIN EN ISO 6571 Gewürze, würzende Zutaten und Kräuter - Bestimmung des ätherischen

2018-03 Ölgehaltes (Wasserdampfdestillationsverfahren)

Gültig ab: 17.01.2025 Ausstellungsdatum: 08.09.2025

Seite 6 von 18

2.1.4 Titrimetrische Bestimmungen von Inhalts- und Zusatzstoffen in Lebensmitteln [Flex B]

ASU L 06.00-7 2014-08	Untersuchung von Lebensmitteln - Bestimmung des Rohproteingehaltes in Fleisch und Fleischerzeugnissen - Titrimetrisches Verfahren nach Kjeldahl
ASU L 13.05-4 1984-05	Untersuchung von Lebensmitteln - Bestimmung des Kochsalzgehaltes in Margarine (Potentiometrisches Verfahren)
ASU L 31.00-3 1997-01	Untersuchung von Lebensmitteln - Bestimmung der titrierbaren Säure von Frucht- und Gemüsesäften (Modifizierung: <i>Probenvolumen 10 ml</i>)
ASU L 52.04-2 1987-06	Untersuchung von Lebensmitteln - Bestimmung der titrierbaren Säuren (Gesamtsäure) in Essig, ausgenommen Weinessig
SOP-MZ-007 2022-05	Bestimmung des Wassergehaltes in Gewürzen mittels Karl-Fischer Titration
SOP-MZ-029 2022-09	Bestimmung des Gesamteiweißgehaltes in Lebensmitteln (Kjeldahl- Verfahren)
SOP-MZ-032 2022-09	Bestimmung des Kochsalzgehaltes in Lebensmitteln (Potentiometrisches Verfahren)
SOP-MZ-038 2022-09	Bestimmung des SO ₂ -Gehaltes in Lebensmitteln nach Reith-Willems

2.1.5 Bestimmung des pH-Wertes in Lebensmitteln mittels Elektrodenmessung [Flex B]

ASU L 06.00-2 1980-09	Untersuchung von Lebensmitteln - Messung des pH-Wertes in Fleisch und Fleischerzeugnissen
ASU L 31.00-2 1997-01	Untersuchung von Lebensmitteln - Bestimmung des pH-Wertes von Frucht- und Gemüsesäften
SOP-MZ-035 2022-09	Bestimmung des pH-Wertes in Lebensmitteln

2.1.6 Gravimetrische Bestimmung von Inhaltsstoffen und Kenngrößen in Lebensmitteln [Flex B]

ASU L 06.00-3	Untersuchung von Lebensmitteln - Bestimmung des Wassergehaltes in
2014-08	Fleisch und Fleischerzeugnissen - Gravimetrisches Verfahren

ASU L 06.00-4 2017-10	Untersuchung von Lebensmitteln - Bestimmung der Asche in Fleisch, Fleischerzeugnissen und Wurstwaren - Gravimetrisches Verfahren (Einschränkung: kein Einsatz von Magnesiumacetat-Lösung)
ASU L 06.00-6 2014-08	Untersuchung von Lebensmitteln - Bestimmung des Gesamtfettgehaltes in Fleisch und Fleischerzeugnissen - Gravimetrisches Verfahren nach Weibull-Stoldt - Referenzverfahren (Modifizierung: <i>ohne Säureaufschluss aus der Trockenmasse</i>)
ASU L 16.01-2 2008-12	Untersuchung von Lebensmitteln - Bestimmung der Asche in Getreidemehl
ASU L 31.00-4 1997-01	Untersuchung von Lebensmitteln - Bestimmung der Asche in Frucht- und Gemüsesäften
ASU L 53.00-4 1996-02	Untersuchung von Lebensmitteln - Untersuchung von Gewürzen und würzenden Zutaten; Bestimmung der Gesamtasche und säureunlöslichen Asche (Modifizierung: <i>Lösen der Asche in 25 ml verd. HCl statt in 15 ml</i>)
SOP-MZ-019 2022-09	Bestimmung der Asche in Lebensmitteln
SOP-MZ-024 2022-09	Bestimmung der Trockenmasse in Lebensmitteln
SOP-MZ-025 2022-10	Bestimmung der Gesamtfüllmenge vorverpackter Lebensmittel
SOP-MZ-040 2022-09	Bestimmung des Gesamtfettgehaltes in Lebensmitteln - Gravimetrisches Verfahren nach Weibull-Stoldt

2.1.7 Bestimmung von Inhaltsstoffen und Kenngrößen in Lebensmitteln mittels Gaschromatographie mit konventionellem Detektor (FID)

SOP-MZ-098 2022-09	Bestimmung des Butterfettes in Lebensmitteln mittels GC-FID
SOP-MZ-004 2022-05	Bestimmung der Fettsäureverteilung in Lebensmitteln mittels GC-FID

2.1.8 Bestimmungen von Inhalts- und Zusatzstoffen sowie Kontaminanten in Lebensmitteln mittels Hochleistungsflüssigkeitschromatographie mit konventionellen Detektoren (RID, DAD, FD) [Flex C]

ASU L 15.03-1 2010-01	Untersuchung von Lebensmitteln - Bestimmung von Ochratoxin A in Gerste und Röstkaffee mittels HPLC mit Reinigung an einer Immunoaffinitätssäule
ASU L 18.00-16 1999-11	Untersuchung von Lebensmitteln - Bestimmung von Theobromin und Coffein in Feinen Backwaren
ASU L 23.05-2 2012-01	Untersuchung von Lebensmitteln - Bestimmung von Aflatoxin B_1 und der Summe von Aflatoxin B_1 , B_2 , G_1 und G_2 in Erdnüssen, Pistazien, Feigen und Paprikapulver mittels HPLC mit Immunoaffinitätssäulen-Reinigung und Nachsäulenderivatisierung
SOP-MZ-005 2022-11	Bestimmung von Ochratoxin A in Gewürzen mittels HPLC mit Reinigung an einer Immunoaffinitätssäule
SOP-MZ-006 2022-11	Untersuchung von Lebensmitteln - Bestimmung von Aflatoxin B1 und der Summe von Aflatoxin B1, B2, G1 und G2 in Erdnüssen, Pistazien, Feigen und Paprikapulver mittels Gewürzen mittels HPLC mit Immunoaffinitätssäulen-Reinigung und Nachsäulenderivatisierung
SOP-MZ-101 2022-09	Bestimmung der Zucker Saccharose, Maltose, Lactose, Glucose und Fructose in Lebensmitteln mittels HPLC-RID
SOP-MZ-102 2022-10	Bestimmung der Ascorbinsäure in Lebensmitteln mittels HPLC-UV
SOP-MZ-103 2022-09	Bestimmung der organischen Säuren Citronen-, Wein-, Äpfel-, Milchund Essig- in Lebensmitteln mittels HPLC-UV
SOP-MZ-108 2022-09	Bestimmung der Konservierungsstoffe Benzoe- und Sorbinsäure sowie der pHB-Methyl-, Ethyl-und Propylester aus Lebensmitteln mittels HPLC-UV

2.1.9 Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES)

SOP-MZ-109	Bestimmung von Na, Mg, Fe, P, Ca und K in Lebens- und Futtermitteln
2022-10	mittels ICP-OES

2.1.10 Induktiv gekoppelte Plasma-Massenspektrometrie (ICP-MS)

ASU L 00.00-135 Untersuchung von Lebensmitteln - Bestimmung von Arsen, Cadmium, 2011-01

Quecksilber und Blei in Lebensmitteln mit ICP-MS nach Druckaufschluss

SOP-MZ-110 Bestimmung von ausgewählten Elementen in Lebens- und Futtermitteln

mittels ICP-MS 2022-10

2.1.11 Kernspin-Resonanz-Spektroskopie (NMR-Spektroskopie)

ASU L 32.00-6 Untersuchung von Lebensmitteln - Bestimmung verschiedener Inhalts-2021-11

stoffe, Zusatzstoffe und Verunreinigungen in alkoholfreien Erfrischungs-

getränken mittels quantitativer Kernspinresonanzspektrometrie

SOP-MZ-008 Bestimmung von Herkunft, Authentizität und Quantifizierung von

Inhalts-stoffen in Säften mittels ¹H-NMR ohne Datenauswertung; 2022-10

Proben-vorbereitung und Messung nach Vorgaben der Bruker BioSpin

GmbH (Juice Screener)

SOP-MZ-010 Quantitative Bestimmung von Inhaltsstoffen in Lebens-, Futtermitteln

2022-11 sowie Lebensmittel- und Futtermittelzusatzstoffen mittels Kernspin-

resonanzspektroskopie

SOP-MZ-012 Quantitative Bestimmung von Methanol, Ameisensäure und Form-

2022-10 aldehyd in Flüssigrauch mittels ¹H-NMR

2.2 Bestimmung von Inhaltsstoffen und Kontaminanten in Lebens- und Futtermitteln mittels Enzymbindungsassay-Methoden (ELISA-Verfahren) [Flex B]

Immunolab, Enzymimmunoassay zur quantitativen Bestimmung von Biotin

Test-Kit Nr.: BIO-E01 (Vitamin H) in Nahrungsmitteln

2014-06

Immunolab, Enzymimmunoassay zur quantitativen Bestimmung von Folsäure

Test-Kit Nr.: FOL-E01 in Nahrungsmitteln

2008-01

RIDASCREEN®-DON, Enzymimmunoassay zur quantitativen Bestimmung

Test-Kit Nr.: R5906 von Deoxynivalenol

2011-08

RIDASCREEN® Gliadin, Enzymimmunoassay zur quantitativen Bestimmung von Gliadinen

und verwandten Prolaminen Test-Kit Nr.: R7001

2012-04

Gültig ab: 17.01.2025 Ausstellungsdatum: 08.09.2025

Seite 10 von 18

RIDASCREEN® Zearalenon, Enzymimmunoassay zur quantitativen Bestimmung von Zearalenon

Test-Kit Nr.: R1401

2009-10

2.3 Bestimmung von Bakterien, Hefen und Schimmelpilzen mittels kultureller mikrobiologischer Untersuchungen in Lebens- und Futtermitteln sowie in oder auf Einrichtungs- und Bedarfsgegenständen im Lebensmittelbereich [Flex B]

ISO 15213-1 2023-01	Mikrobiologie der Lebensmittelkette - Horizontales Verfahren zum Nachweis und zur Zählung von Clostridium spp Teil 1: Zählung von sulfitreduzierenden Clostridium spp. durch Koloniezählverfahren
DIN EN ISO 22964 2017-08	Mikrobiologie der Lebensmittelkette - Horizontales Verfahren zum Nachweis von Cronobacter spp.
ASU B 80.00-1 2023-08	Untersuchung von Bedarfsgegenständen - Horizontales Verfahren zur Be-stimmung des Oberflächenkeimgehaltes und Nachweis von bestimmten Mikroorganismen auf Einrichtungs- und Bedarfsgegenständen entlang der Lebensmittelkette - Teil 1: Tupferverfahren
ASU B 80.00-3 2023-08	Untersuchung von Bedarfsgegenständen - Bestimmung des Oberflächen- keimgehaltes auf Einrichtungs- und Bedarfsgegenständen im Lebensmit- telbereich - Teil 3: Semiquantitatives Verfahren mit nährbodenbeschich- teten Entnahmevorrichtungen (Abklatschverfahren)
ASU L 00.00-20 2021-07	Untersuchung von Lebensmitteln - Horizontales Verfahren zum Nachweis, zur Zählung und zur Serotypisierung von Salmonellen - Teil 1: Nachweis von Salmonella spp.
ASU L 00.00-22 2018-03	Untersuchung von Lebensmitteln - Horizontales Verfahren für den Nachweis und die Zählung von - Listeria monocytogenes und von Listeria spp Teil 2: Zählverfahren
ASU L 00.00-32/1 2018-03 Berichtigung 2018-06	Untersuchung von Lebensmitteln - Horizontales Verfahren für den Nachweis und die Zählung von - Listeria monocytogenes und von Listeria spp Teil 1: Nachweisverfahren
ASU L 00.00-33 2021-03	Untersuchung von Lebensmitteln - Horizontales Verfahren zur Zählung von präsumtivem Bacillus cereus - Koloniezählverfahren bei 30 °C

ASU L 00.00-55 Untersuchung von Lebensmitteln - Horizontales Verfahren für die Zäh-

2022-08 lung von koagulase-positiven Staphylokokken (Staphylococcus aureus

und anderen Spezies) in Lebensmitteln - Teil 1: Verfahren mit Baird-

Parker-Agar

(Modifizierung: Verwendung eines Latex-Agglutinations-Test Fa. Oxoid)

ASU L 00.00-88/2 Untersuchung von Lebensmitteln - Horizontales Verfahren zur Zählung

2023-04 von Mikroorganismen - Teil 2: Koloniezählung bei 30 °C mittels

Oberflächenverfahren

ASU L 00.00-107/1 Untersuchung von Lebensmitteln - Horizontales Verfahren zum

2018-03 Nachweis und zur Zählung von - Campylobacter spp. -

Teil 1: Nachweisverfahren

ASU L 01.00-72 Untersuchung von Lebensmitteln - Bestimmung präsumtiver Bacillus

2011-01 *cereus* in Milch und Milchprodukten

ASU L 06.00-32 Untersuchung von Lebensmitteln - Bestimmung von Enterococcus

2018-10 faecalis und Enterococcus faecium in Fleisch und Fleischerzeugnissen -

Spatelverfahren (Referenzverfahren)

ASU L 06.00-35 Untersuchung von Lebensmitteln - Bestimmung von aerob wachsenden

2017-10 Milchsäurebakterien in Fleisch und Fleischerzeugnissen -

Spatelverfahren (Referenzverfahren)

ASU L 06.00-43 Untersuchung von Lebensmitteln - Zählung von *Pseudomonas spp.* in

2011-06 Fleisch und Fleischerzeugnissen

3MTM Petrifilm[®] Bestimmung von coliformen Keimen

High-Sensitivity Coliform Count Plate (HSCC) Katalog-Nr. 6405

2021-06

3M[™] Petrifilm[®] Bestimmung von Escherichia coli und coliformen Keimen

Rapid E.coli/ Coliform Count

Plates (REC)

Katalog-Nr. 6436/6437

2021-10

3M[™] Petrifilm[®] Bestimmung von Hefe- und Schimmelpilzen

Rapid Yeast aund Mould Count Plates (RYM) Katalog-Nr. 6475/6477

2022-06

Gültig ab: 17.01.2025 Ausstellungsdatum: 08.09.2025

Seite 12 von 18

3MTM Petrifilm[®] Bestimmung von Enterobacteriaceae

Enterobacteriaceae Count

Plate (EB)

Katalog-Nr. 6420/6421

2021-06

2.4 Molekularbiologische Untersuchungen

2.4.1 Nachweis und Bestimmung von Bakterien, genveränderten Organismen, Tier- und Pflanzenarten in Lebens- und Futtermitteln mittels Real-Time PCR [Flex B]

SureTect™ Untersuchung von Lebensmitteln - Qualitativer Nachweis von Salmonella species Salmonellen in Lebensmitteln; Real-time PCR-Verfahren

PCR Assay (Real Time PCR),

Thermo Fisher Scientific REF PT0100A

2020-07

Foodproof® GMO Qualitativer Nachweis von GVO (35S/ NOS/ bar/ FMV) mittels

Screening Kit R 302 17 Real Time PCR

2017-03

Foodproof [®] Quantitativer Nachweis von Sellerie mittels Real-time PCR

Celery Detection Kit R 302 60

2014-11

2.4.2 Bestimmung mittels LCD-Array

Meat 5.0. LCD Array Kit Qualitativer Nachweis von Tierarten mittels LCD-Array in Lebens- und Futtermitteln

Fa. Chipron Berlin Ref A-500-04 2014-10

2.5 Bestimmung des Aussehens, des Geruchs, des Geschmack, der Haptik und der Akkustik von Lebensmitteln, Bedarfsgegenständen mittels einfach beschreibender Prüfungen [Flex B]

DIN EN ISO 4120 Sensorische Analysen - Prüfverfahren - Dreiecksprüfung

2021-06

DIN EN ISO 5495 Sensorische Analyse - Prüfverfahren - Paarweise Vergleichsprüfung

2016-10

Gültig ab: 17.01.2025 Ausstellungsdatum: 08.09.2025

Seite 13 von 18

DIN EN ISO 10399 2018-01	Sensorische Prüfverfahren - Prüfverfahren - Duo-Trio-Prüfung
DIN EN ISO 13299 2016-09	Sensorische Analyse - Allgemeiner Leitfaden zur Erstellung eines sensorischen Profils
DIN ISO 3972 2013-12	Sensorische Analyse - Methodologie - Bestimmung der Geschmacks- empfindlichkeit
DIN ISO 8587 2010-08	Sensorische Prüfverfahren - Prüfverfahren - Rangordnungsprüfung
DIN 10964 2014-11	Sensorische Prüfverfahren - Einfach beschreibende Prüfung
DIN ISO 16779 2018-05	Sensorische Analyse - Beurteilung (Ermittlung und Überprüfung) der Mindesthaltbarkeit von Lebensmitteln
DIN 10969 2018-04	Sensorische Prüfverfahren - Beschreibende Prüfung mit anschließender Qualitätsbewertung
DIN 10976 2016-08	Sensorische Prüfung - Difference from Control-Test (DfC-Test)
DIN 10955 2004-06	Sensorische Prüfung - Prüfung von Packstoffen und Packmitteln für Lebensmittel

3 Untersuchungen gemäß Trinkwasserverordnung - TrinkwV - Trinkwasserverordnung (TrinkwV) vom 20. Juni 2023 (BGBl. 2023 I Nr. 159, S. 2)

PROBENAHME

Verfahren	Titel
DIN ISO 5667-5	Wasserbeschaffenheit - Probenahme - Teil 5: Anleitung zur
2011-02	Probenahme von Trinkwasser aus Aufbereitungsanlagen und
	Rohrnetzsystemen
DIN EN ISO 19458	Wasserbeschaffenheit - Probenahme
2006-12	für mikrobiologische Untersuchungen
UBA Empfehlung	Systemische Untersuchungen von Trinkwasser-Installationen
18. Dezember 2018	auf Legionellen nach Trinkwasserverordnung - Probennahme,
(Legionellen)	Untersuchungsgang und Angabe des Ergebnisses

ANLAGE 1: MIKROBIOLOGISCHE PARAMETER

TEIL I: Allgemeine Anforderungen an Trinkwasser

Parameter	Verfahren
Escherichia coli (E. coli)	DIN EN ISO 9308-1 2017-09
Intestinale Enterokokken	DIN EN ISO 7899-2 2000-11

TEIL II: Anforderungen an Trinkwasser, das zur Abgabe in verschlossenen Behältnissen bestimmt ist

Parameter	Verfahren
Escherichia coli (E. coli)	DIN EN ISO 9308-1 2017-09
Intestinale Enterokokken	DIN EN ISO 7899-2 2000-11
Pseudomonas aeruginosa	DIN EN ISO 16266 2008-05

ANLAGE 2: CHEMISCHE PARAMETER

TEIL I: Chemische Parameter, deren Konzentration sich im Verteilungsnetz einschließlich der Trinkwasser-Installation in der Regel nicht mehr erhöht

Parameter	Verfahren
Acrylamid	nicht belegt
Benzol	nicht belegt
Bor	DIN EN ISO 17294-2 2017-01
Bromat	nicht belegt
Chrom	DIN EN ISO 17294-2 2017-01
Cyanid	nicht belegt
1,2-Dichlorethan	nicht belegt
Fluorid	nicht belegt
Microcystin-LR	nicht belegt
Nitrat	nicht belegt
Pestizide	nicht belegt
Pestizide-gesamt	nicht belegt
Summe PFAS-20	nicht belegt
Summe PFAS-4	nicht belegt
Quecksilber	DIN EN ISO 17294-2 2017-01
Selen	DIN EN ISO 17294-2 2017-01
Tetrachlorethen und	nicht belegt
Trichlorethen	Thene belege
Uran	DIN EN ISO 17294-2 2017-01

TEIL II: Chemische Parameter, deren Konzentration im Verteilungsnetz einschließlich der Trinkwasser-Installation ansteigen kann

Parameter	Verfahren
Antimon	DIN EN ISO 17294-2 2017-01
Arsen	DIN EN ISO 17294-2 2017-01
Benzo-(a)-pyren	nicht belegt
Bisphenol A	nicht belegt

Parameter	Verfahren
Blei	DIN EN ISO 17294-2 2017-01
Cadmium	DIN EN ISO 17294-2 2017-01
Chlorat	nicht belegt
Chlorit	nicht belegt
Epichlorhydrin	nicht belegt
Halogenessigsäuren (HAA-5)	nicht belegt
Kupfer	DIN EN ISO 17294-2 2017-01
Nickel	DIN EN ISO 17294-2 2017-01
Nitrit	nicht belegt
Polyzyklische aromatische	nicht belegt
Kohlenwasserstoffe (PAK)	micht belegt
Trihalogenmethane (THM)	nicht belegt
Vinylchlorid	nicht belegt

ANLAGE 3: INDIKATORPARAMETER

Teil I: Allgemeine Indikatorparameter

Parameter	Verfahren
Aluminium	DIN EN ISO 17294-2 2017-01
Ammonium	nicht belegt
Calcitlösekapazität	nicht belegt
Chlorid	nicht belegt
Clostridium perfringens, einschließlich Sporen	DIN EN ISO 14189 2016-11
Coliforme Bakterien	DIN EN ISO 9308-1 2017-09
Eisen	DIN EN ISO 17294-2 2017-01
Elektrische Leitfähigkeit	DIN EN 27888 1993-11
Färbung	nicht belegt
Geruch	DIN EN 1622 2006-10 (Anhang C)
Geschmack	DIN EN 1622 2006-10 (Anhang C)
Koloniezahl bei 22 °C	DIN EN ISO 6222 1999-07
Koloniezahl bei 36 °C	DIN EN ISO 6222 1999-07
Mangan	DIN EN ISO 17294-2 2017-01
Natrium	DIN EN ISO 17294-2 2017-01
Organisch gebundener Kohlenstoff (TOC)	nicht belegt
Oxidierbarkeit	nicht belegt
Sulfat	nicht belegt
Trübung	nicht belegt
Wasserstoffionenkonzentration	DIN EN ISO 10523 2012-04

Teil II: Spezieller Indikatorparameter für Anlagen der Trinkwasserinstallation

Parameter	Verfahren
Legionella spec.	DIN EN ISO 11731 2019-03
	UBA Empfehlung 18. Dezember 2018
	Aktualisierung Dezember 2022
	(Bundesgesundheitsblatt 2023 S. 224)

Teil III: Spezieller Indikatorparameter für das Auftreten bestimmter mikrobieller Gefährdungen nicht belegt

ANLAGE 4: ANFORDERUNGEN AN TRINKWASSER IN BEZUG AUF RADIOAKTIVE STOFFE nicht belegt

PARAMETER, DIE NICHT IN DEN ANLAGEN 1 BIS 4 DER TRINKWASSERVERORDNUNG ENTHALTEN SIND

Weitere periodische Untersuchungen

Parameter	Verfahren
Calcium	DIN EN ISO 17294-2 2017-01
Kalium	DIN EN ISO 17294-2 2017-01
Magnesium	DIN EN ISO 17294-2 2017-01
Säure- und Basekapazität	nicht belegt
Phosphat	nicht belegt

Die Akkreditierung ersetzt nicht das Anerkennungs- oder Zulassungsverfahren der zuständigen Behörde nach § 40 Absatz (2) TrinkwV.

5 Probenahme und mikrobiologische Untersuchungen von Nutzwasser gemäß §3 Absatz 8 42. BImSchV

Probennahme

Verfahren	Titel
DIN EN ISO 19458 (K 19)	Wasserbeschaffenheit - Probenahme für mikrobiologische
2006-12	Untersuchungen
	Empfehlung des Umweltbundesamtes zur Probenahme und zum
	Nachweis von Legionellen in Verdunstungskühlanlagen, Kühl-
	türmen und Nassabscheidern vom 06.03.2020, Abschnitt C und D

Mikrobiologische Untersuchungen

Parameter	Verfahren
Legionellen	DIN EN ISO 11731 (K 23)
	2019-03
	Empfehlung des Umweltbundesamtes zur Probenahme und zum
	Nachweis von Legionellen in Verdunstungskühlanlagen, Kühl-
	türmen und Nassabscheidern vom 06.03.2020, Abschnitte E und F
	unter Berücksichtigung von Anhang 1 und 2
Koloniezahl bei 22°C	DIN EN ISO 6222 (K 5)
und 36 °C	1999-07

verwendete Abkürzungen:

ASTA American Spice Trade Association

ASU Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFGB

DIN Deutsches Institut für Normung e. V.

EN Europäische Norm

IEC International Electrotechnical Commission
ISO International Organization for Standardization

SOP-MZ-XXX Hausverfahren Laboratorien Mainz

LFGB Lebensmittel-, Bedarfsgegenstände- und Futtermittel-Gesetzbuch

UBA Umweltbundesamt